
Introduction to Movesense
Programming

14.2.2019
Petri Lipponen

@ Movesense Meetup Düsseldorf

Content

• Movesense system overview

• Movesense sensor overview

• How to start developing?

• Data aquisition

• Sensor simulator

• Sensor programming basics

• Mobile programming basics

• Wrap-up

Movesense System Overview

• Movesense sensor

• Sensor software platform
• REST like sensor API’s

• Mobile connectivity solution for iOS & Android
• Easy to access all sensor features via same API’s

• JSON & REST

• Support for other frameworks
• Unity3D

• Xamarin

Movesense Sensor Overview

• CR 2025 Coincell battery

• 64MHz NordicSemiconductor MCU (RAM: 64kB, FLASH 512kB)

• Data memory: 384kB

• 9-axis IMU (Accelerometer, Gyroscope, Magnetometer)

• Temperature measurement

• Maxim ECG Analog Frontend
(ECG, HeartRate, RR-intervals, stud contact detection)

• Maxim 1-wire Master
• Smart connector detection
• 1-Wire communication support (1.8 volts)

How to start developing?

• Have a clear idea on what you want to measure

• Get to know the sensor using the mobile ”Showcase App”

• Record some data and take a good look at it
• What does it show?
• What does it not show?
• Noise signals?

• Make a simple mobile software that ”does the trick”
• Easier to debug & find coding help!

• Start development on the simulator and only when that works
continue on the sensor device

Data aquisition

• Understand what you are measuring

• Speed & capacity limits by sensor, data-memory and BLE connections!
• Sensor: G-ranges, sensitivity, etc.
• Data memory: 400kbps bandwidth, limited size
• BLE: 12/60 kB/s theoretical maximum (1.7 / 1.8), in practice less

• Measure with Showcase App if possible, using DataLogger as a
fallback (see Android samples/DataLoggerSample)

Sensor Simulator

• ”Movesense sensor software on Windows & Visual Studio”

• Easier debugging and faster development cycle

• Simulated sensors with data import

• Whiteboard communication using wbcmd.exe

• Limitations:
• No BLE

• No Mobile communication

• Not 100% accurate

Preparing data for simulator

• Edit CSV so that the data is in correct format:
• Comma (,) separator

• Period (.) as decimal

• Header row with LoopingTimestamp (optional)

• 1st column is ”Timestamp” (ms since start of the sensor)

• Rest of columns with data. ColumnHeader from simulator debug output

• Confirm that simulator reads the file correctly

• Confirm that data comes out correctly (use wbcmd)

Sensor programming basics

• C/C++ with some limitations:
• No dynamic memory (there is but…)

• No STL

• Limited resources (thread stack, cstack, RAM)

• Asynchronous API’s
• Code MUST NOT hog the execution => No busy-loops!

• Automatic power optimization

• Call – callback structure

• REST-like with some additions (Publish-subscribe pattern)

Sensor software structure

• wbresources –folder has app specific API definitions

• Source files in app folder

• CMakeLists.txt tells how to build

• app_root.yaml contains execution contexts and lists app API’s

• App.cpp contains applications movesense settings
• Optional modules

• Data memory allocations

• Debug settings

Sensor programming basics: Whiteboard

• Services, clients, timers, threading and external communication

• ExecutionContext: Whiteboard threads

• LaunchableModule: ”wb-aware module”
• Runs in an ExecutionContext (WB thread)
• Lifecycle callbacks (initModule, startModule, stopModule, deinitModule)

• ResourceProvider: WB REST service
• API defined using Swagger 2.0 notation (yaml-file)
• Request callbacks: onGetRequest, onPutRequest,…

• ResourceClient: WB REST client
• Make requests to internal and external whiteboard services
• Request methods: asyncGet, asyncPut,…

Mobile programming basics

• MDS: Whiteboard for mobile

• Same sensor REST-api’s available from mobile

• REST verb method calls with async JSON results

• Least moving parts when developing on Android / iOS MSD

• Best code samples are for Android

• Alternatively:
• Use plain BLE & GATT and CustomGattService (requires sensor programming)

• Use some multiplatform framework: Unity3D, Xamarin, react native, cordova

Questions?

