MOVESENSE

MOVESENSE SENSOR
PROGRAMMING

EDUCATION SESSION FOR
CUSTOMERS

Petri Lipponen 2021-04-21

.M MOVESENSE

Content

- What is Movesense?

- Sensor details

- Sensor programming environment (Docker)
- Sensor programming basics

- Movesense REST API

- Using data memory

- Security considerations

- Alternative communication methods

- Using multiple sensors
- Q&A

.M MOVESENSE

“What is Movesense?”

In Short:

“Open Wearable Tech Platform”

Programmable Sensor
Mobile SDKs

Embedded REST communication
framework “Whiteboard”

Physical accessories available

.M MOVESENSE

“What is Movesense?” Continued...

4 N

Bluetooth
Low Energy

 Whiteboard (REST)
* GATT

* BLE Advertising K /

https://www.movesense.com/specifications/

https://www.movesense.com/specifications/

.M MOVESENSE

Movesense sensor details

e Waterproof: 30 m / 100 ft

* CR 2025 Coincell battery

* 64MHz NordicSemiconductor MCU (RAM: 64kB, FLASH 512kB)
* 9-axis IMU (Accelerometer, Gyroscope, Magnetometer)

 Maxim ECG Analog Frontend
(ECG, HeartRate, RR-intervals, stud contact detection)

* Data memory: 384kB (EEPROM)
 Temperature measurement

e 1-wire Master (non-medical only)
* Smart connector detection
* 1-Wire communication support

.M MOVESENSE

Sensor Programming Environment

- Docker based build environment for sensor hardware
- Simple build commands and many sample apps available

+ “cmake” to initialize the build project

- “ninja pkgs” builds the hex files (for Jig or production line)
and DFU (Firmware update) packages

« More details: https://www.movesense.com/docs/esw/getting_started/#toolchain-and-usage

https://www.movesense.com/docs/esw/getting_started/#toolchain-and-usage

.M MOVESENSE

Docker build demo

.M MOVESENSE

Sensor Simulator

"Movesense sensor software on Windows & Visual Studio”
- Easier debugging and faster development cycle

« Simulated sensors with data import

« Whiteboard communication using wbcmd.exe

Limitations:

- No BLE

« No Mobile communication
« Not 100% accurate

More details: https://www.movesense.com/docs/esw/sensor_simulator/

https://www.movesense.com/docs/esw/sensor_simulator/

.M MOVESENSE

Sensor simulator demo

.M MOVESENSE

Sensor Programming Basics

- Language: C/C++
* No dynamic memory allocation
* No STL
* Limited RAM & Flash

« All hardware and low level access is via Movesense
REST API

* GET/POST/PUT/DELETE
* Publish-subscribe extension for datastreams

* Same API inside the sensor and from mobile using MDS
library!

- Fully asynchronous:
* Code MUST NOT hog the execution => No busy-loops!
* Automatic power optimization
* Call — callback structure

.M MOVESENSE

Sensor Programming Basics:
Whiteboard REST Framework

* Provides: services, clients, timers, threading and external
communication

 ExecutionContext: Whiteboard threads

* LaunchableModule: "WB-aware class”
* Runsin an ExecutionContext (WB thread)
* Lifecycle callbacks (initModule, startModule, stopModule,
deinitModule)
* ResourceProvider: WB REST service
* API defined using Swagger 2.0 notation (yaml-file)
* Request callbacks: onGetRequest, onPutRequest,...

* ResourceClient: WB REST client
* Make requests to internal and external whiteboard services
* Request methods: asyncGet, asyncPut,...

M

MOVESENSE

Sensor Programming Basics:
project structure

CMakelists.txt: Main project file

App.cpp:
* Module list of the user application
* Optional framework modules

* Data memory layout

app_root.yami:
* ExecutionContext definitions
* Users API declarations

wbresources —sub folder
* APIs defined by the application

M

Movesense REST API

Main sections:
/Meas for sensor data (Acc, Gyro, Magn, Temp, HR, ECG)
/Mem for data memory access: DataLogger & Logbook
/Comm for communication protocols: BLE, 1Wire
/Component for low level features: LED, EEPROM, chip specific features
/System for system features: Mode, Settings, Energy, Memory, States
/Ul for user interface (LED blinks)
/Misc for the ones that do not fit in the above
and
/Whiteboard for Whiteboards own services

See: https://bitbucket.org/suunto/movesense-device-
lib/src/master/MovesenseCorelLib/resources/movesense-api/

https://bitbucket.org/suunto/movesense-device-lib/src/master/MovesenseCoreLib/resources/movesense-api/

.M MOVESENSE

Movesense REST API: /Meas

Same pattern for all sensors

/Meas/***** /Info:
« Valid sample rates
- Sensitivity values (G-range etc.)

/Meas/****/Config:
« Sensitivity etc.

/Meas/****/<SampleRate>:
- Data stream @ given sample rate (e.g. /Meas/Acc/13)
« Note: when subscribing the /Subscribe is not given

.M MOVESENSE

Using Data Memory

- EEPROM (two chips: 256 kB + 128 kB)

+ Low power consumption, max speed 400 kbps Logbook memory setup in App.cpp:
| | - LOGBOOK MEMORY AREA(start,
High level API:

. /Mem/DatalLogger for storing any subscribable data size)
- /Mem/Logbook for getting stored data
- Stored in a binary format "sbem” in a ring buffer

+ Mobile MDS has automatic Logbook proxy with built-
in SBEM to JSON conversion

Low level API:

- /Component/EEPROM/<chip#> \ \

See:
_ _ Space reserved for s 4
https://bitbucket.org/suunto/movesense-mobile- application specific pace reservea for

lib/src/master/android/samples/DataloggerSample/ use Logbook

https://bitbucket.org/suunto/movesense-mobile-lib/src/master/android/samples/DataLoggerSample/

.M MOVESENSE

Security considerations

Bluetooth Bonding (encrypted
connection)

“Just works” or PIN code
- Adjustable policy (allow/deny re-bonding)
BLE-Keys stored in the internal FLASH memory
- Adjustable re-bonding time after powerup

DFU package signature

- Coming customer specific keys and bootloader
(2.1 release)

App-specific authentication

Authentication resource which required before
data service access

Encrypted data memory
- Application responsibility

.M MOVESENSE

Alternative Communication Methods

“What if | want to use other than Android or iOS to talk to the sensors?”

Built in HRS & Nordic UART services
- Limited to those two, but easy to use if nothing else is needed

CustomGATTService

- Possible to create almost any kind of GATT service)
- >

« Up to 5 characteristics

- See: gatt_sensordata_app & custom_gattsvc_app in samples

- Samples include python and WebBLE clients, any BLE device can
connect

Embedding data to BLE Advertising packet

« Up to 27 bytes per update, updated max ~5 times per second
« No limit to number of sensors

« See: custom_bleadv_app in samples

.M MOVESENSE

Using Multiple Sensors

BLE limitations:
- Usually 4-7 connections allowed at the time
- Bandwidth can be a limiting factor

Synchronization of data from different devices:

Each sensor has high accuracy (20 ppm) clock that A
provides the timestamps (“RelativeTime” = milliseconds) |
since reset))

NOTE: Not all sensors can provice accurate sample
rates! E.g. Acc, Gyro & Magnetometer have up-to 10%
error in sample rate (Hardware limitation)

PUT /Time allows setting universal time to each sensor

- GET /Time/Detailed returns mapping between UTC and
RelativeTime (=Timestamp) on each sensor

.M MOVESENSE

Simple method for synchronizing multi-
sensor data

1. Set UTC time of each sensor using PUT /Time

2. GET /Time/Detailed of each sensor and store the difference
of UTC and RelativeTime

3. Record data which has Timestamps (RelativeTime) in it

4. For each sample, calculate UTC time from the timestamp and
mapping from step “2”.

5. If your algorithm needs simultaneous samples from all .\
sensors and you use IMU data (inaccurate samplerate), A
choose a “master sensor” and interpolate other data from
other sensors to match it.

6. If the recording time is really long the <20 ppm error may
cause too much drift between sensors. In that case you can
repeat step “2” in the end of the recording and compensate
for individual sensor clock drifts over recordings.

7. It's always a good idea to confirm the synchronization (if
possible) by tapping sensors together and visually checking
the spike match.

.M MOVESENSE

nl.
(/p)
c
O
e
(7p)
D
-
O

